Pension Planning and Investments
Under Transaction Costs

M.B. Chiarolla¹ M. Longo² G. Stabile¹

¹Metodi e modelli per l’economia, il territorio e la finanza,
Università “La Sapienza”, Roma

²Dipartimento di Discipline Matematiche, Finanza Matematica ed Econometria,
Università Cattolica, Milano

Annuity Day, IFID Centre, November 24th, 2011
Outline

Motivations
-Saving in a Retirement Plan is a partially irreversible investment
-Annuity Puzzle
-Our approach: partially irreversible pension fund contribution

The model

Analysis
-Post-retirement problem
-Pre-retirement problem

Conclusion
Savings in a Retirement Plan is a partially irreversible investment

- The contribution to a retirement plan is in general costless also in many countries tax laws encourages individuals to save for retirement.

- Early withdrawals from a retirement plan are subject to penalties. This might discourage individuals from investing in retirement plans.
The Italian case

- Early withdrawals are allowed in the following cases:
 - medical expenses: maximal amount 75%, tax penalty of 10%
 - buying a house: maximal amount 75%, tax penalty of 23%
 - other motives: maximal amount 30%, tax penalty of 23%

- At the end of 2010, the membership to voluntary pension plans was only 23% (Covip, Commissione di Vigilanza su i Fondi Pensione)
The Italian case

- Early withdrawals are allowed in the following cases:
 - medical expenses: maximal amount 75%, tax penalty of 10%
 - buying a house: maximal amount 75%, tax penalty of 23%
 - other motives: maximal amount 30%, tax penalty of 23%

- At the end of 2010, the membership to voluntary pension plans was only 23% (Covip, Commissione di Vigilanza su i Fondi Pensione)
Annuity Puzzle

- Yaari showed that individuals with no bequest motive annuitize all their wealth at retirement (Yaari, RES 1965)

- “empirical evidence shows that very few people purchase life annuities” (Brown, J.Publ.Ec. 2001)
Annuity Puzzle

- Yaari showed that individuals with no bequest motive annuitize all their wealth at retirement (Yaari, RES 1965)

- “empirical evidence shows that very few people purchase life annuities” (Brown, J.Publ.Ec. 2001)
Annuity Puzzle

- Yaari showed that individuals with no bequest motive annuitize all their wealth at retirement (Yaari, RES 1965)

- “empirical evidence shows that very few people purchase life annuities” (Brown, J.Publ.Ec. 2001)
Literature on the puzzle’s explanation

- *Bequest* (Hurd, Econometrica 1989)
- *Adverse selection* (Abel, Econometrica 1986)
- *Annuity costs* (Friedman and Warshawsky, QJE 1990)
- *Irreversible annuitization* (Milevsky and Young, JEDC 2007)
Literature on the puzzle’s explanation

- *Bequest* (Hurd, Econometrica 1989)
- *Adverse selection* (Abel, Econometrica 1986)
- *Annuity costs* (Friedman and Warshawsky, QJE 1990)
- *Irreversible annuitization* (Milevsky and Young, JEDC 2007)
Literature on the puzzle’s explanation

- *Bequest* (Hurd, Econometrica 1989)
- *Adverse selection* (Abel, Econometrica 1986)
- *Annuity costs* (Friedman and Warshawsky, QJE 1990)
- *Irreversible annuitization* (Milevsky and Young, JEDC 2007)
Literature on the puzzle’s explanation

- *Bequest* (Hurd, Econometrica 1989)
- *Adverse selection* (Abel, Econometrica 1986)
- *Annuity costs* (Friedman and Warshawsky, QJE 1990)
- *Irreversible annuitization* (Milevsky and Young, JEDC 2007)
Literature on the puzzle’s explanation

- *Bequest* (Hurd, Econometrica 1989)
- *Adverse selection* (Abel, Econometrica 1986)
- *Annuity costs* (Friedman and Warshawsky, QJE 1990)
- *Irreversible annuitization* (Milevsky and Young, JEDC 2007)
Our approach: partially irreversible pension fund contribution

- Illiquidity during the accumulation of the retirement account

- Transaction costs machinery (Magill and Constantinides, 1976; Davis and Norman, 1990; Shreve and Soner, 1994)
The model

Consider an individual that maximizes the expected discounted utility from consumptions over his random lifetime horizon \([0, \tau]\).

Let \(T\) be the deterministic retirement time.

- **Pre-retirement**: on \([0, T \wedge \tau)\)
 The individual may invest in the financial market while contributing to a voluntary pension account. At times, to finance consumption, he might withdraw funds from the pension account, incurring in penalties.

- **Retirement**: at \(T\)
 The pension account is converted into a constant riskless life annuity.

- **Post-retirement**: on \([T \wedge \tau, \tau]\)
 The individual receives the annuity income while still investing in the financial market.
The model

Consider an individual that maximizes the expected discounted utility from consumptions over his random lifetime horizon \([0, \tau]\)

Let \(T\) be the deterministic retirement time

- **Pre-retirement**: on \([0, T \wedge \tau)\)
 The individual may invest in the financial market while contributing to a voluntary pension account. At times, to finance consumption, he might withdraw funds from the pension account, incurring in penalties

- **Retirement**: at \(T\)
 The pension account is converted into a constant riskless life annuity

- **Post-retirement**: on \([T \wedge \tau, \tau]\)
 The individual receives the annuity income while still investing in the financial market
The model

Consider an individual that maximizes the expected discounted utility from consumptions over his random lifetime horizon \([0, \tau]\).

Let \(T\) be the deterministic retirement time.

- **Pre-retirement**: on \([0, T \wedge \tau)\)
 The individual may invest in the financial market while contributing to a voluntary pension account. At times, to finance consumption, he might withdraw funds from the pension account, incurring in penalties.

- **Retirement**: at \(T\)
 The pension account is converted into a constant riskless life annuity.

- **Post-retirement**: on \([T \wedge \tau, \tau]\)
 The individual receives the annuity income while still investing in the financial market.
The model

Consider an individual that maximizes the expected discounted utility from consumptions over his random lifetime horizon $[0, \tau]$

Let T be the deterministic retirement time

- **Pre-retirement**: on $[0, T \land \tau)$
 The individual may invest in the financial market while contributing to a voluntary pension account. At times, to finance consumption, he might withdraw funds from the pension account, incurring penalties

- **Retirement**: at T
 The pension account is converted into a constant riskless life annuity

- **Post-retirement**: on $[T \land \tau, \tau]$
 The individual receives the annuity income while still investing in the financial market
The Market

On a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\)

- **Uncertainty:** 2-dim Brownian Motion \((Z_1(t), Z_2(t))\)

- The frictionless Financial market:

\[
\begin{aligned}
\begin{cases}
 dB(t) = rB(t) \, dt \\
 dA(t) = A(t) [\mu_a dt + \sigma_a dZ_1(t)]
\end{cases}
\end{aligned}
\]

- The Pension Fund Account:

\[
dP(t) = P(t) [\mu_p dt + \sigma_p dZ_1(t)]
\]

We assume that \(\mu_p \geq \mu_a\) and \(\sigma_p \leq \sigma_a\)
The Market

On a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P}) \)

- **Uncertainty:** 2-dim Brownian Motion \((Z_1(t), Z_2(t))\)

- **The frictionless Financial market:**
 \[
 \begin{align*}
 dB(t) &= rB(t) \, dt \\
 dA(t) &= A(t) [\mu_a dt + \sigma_a dZ_1(t)]
 \end{align*}
 \]

- **The Pension Fund Account:**
 \[
 dP(t) = P(t) [\mu_p dt + \sigma_p dZ_1(t)]
 \]

We assume that \(\mu_p \geq \mu_a \) and \(\sigma_p \leq \sigma_a \)
The Market

On a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\)

- **Uncertainty:** 2-dim Brownian Motion \((Z_1(t), Z_2(t))\)

- **The frictionless Financial market:**

\[
\begin{align*}
 dB(t) &= rB(t) \, dt \\
 dA(t) &= A(t) \left[\mu_a dt + \sigma_a dZ_1(t) \right]
\end{align*}
\]

- **The Pension Fund Account:**

\[
 dP(t) = P(t) \left[\mu_p dt + \sigma_p dZ_1(t) \right]
\]

We assume that \(\mu_p \geq \mu_a\) and \(\sigma_p \leq \sigma_a\)
The individual wealth

- **Our state variables are**
 - $X(\cdot)$ liquid wealth (e.g. allocated in the Financial Market)
 - $Y(\cdot)$ illiquid wealth (i.e. the wealth invested in the pension fund)

- **Income flow:**
 \[
 dl(t) = X(t) \left[\mu_1 dt + \sigma_1 dZ(t) \right],
 \]
 \[
 Z(t) = \rho Z_1(t) + \sqrt{1 - \rho^2} Z_2(t), \quad \rho \in (-1, 1)
 \]
 (unhedgeable income, Hipp and Plum, F&S 2003)

- **Market price of a continuous monetary unit Life Annuity**
 \[
 a_{T,r} = \int_0^\infty e^{-rs} s p^o_T ds
 \]
 $s p^o_T$ is the survivor probability used by the insurer
The individual wealth

- Our state variables are
 - \(X (\cdot) \) liquid wealth (e.g. allocated in the Financial Market)
 - \(Y (\cdot) \) illiquid wealth (i.e. the wealth invested in the pension fund)

- Income flow:
 \[
 dl (t) = X (t) \left[\mu_l dt + \sigma_l dZ (t) \right],
 \]
 \[
 Z (t) = \rho Z_1 (t) + \sqrt{1 - \rho^2} Z_2 (t), \quad \rho \in (-1, 1)
 \]
 (unhedgeable income, Hipp and Plum, F&S 2003)

- Market price of a continuous monetary unit Life Annuity
 \[
 a_{T,r} = \int_0^\infty e^{-rs} sp_{T}^{ob} ds
 \]
 \(sp_{T}^{ob} \) is the survivor probability used by the insurer
The individual wealth

- Our state variables are
 - $X(\cdot)$ liquid wealth (e.g. allocated in the Financial Market)
 - $Y(\cdot)$ illiquid wealth (i.e. the wealth invested in the pension fund)

- Income flow:
 \[
dl(t) = X(t) \left[\mu_1 dt + \sigma_1 dZ(t) \right],
 \]
 \[
 Z(t) = \rho Z_1(t) + \sqrt{1 - \rho^2} Z_2(t), \quad \rho \in (-1, 1)
 \]
 (unhedgeable income, Hipp and Plum, F&S 2003)

- Market price of a continuous monetary unit Life Annuity
 \[
a_T,r = \int_0^\infty e^{-rs} s\rho_T^{ob} ds
 \]
 $s\rho_T^{ob}$ is the survivor probability used by the insurer
The model

Control variables

✓ $c(\cdot)$ consumption rate
✓ $\pi(\cdot)$ amount of liquid wealth invested in stocks
✓ $M(\cdot)$ cumulative withdrawal from the pension fund
✓ $L(\cdot)$ cumulative contribution to the pension fund

Early withdrawals are subject to a cost proportional to the amount, i.e. if the individual withdraws one monetary unit from the pension account, he actually receives $(1 - \lambda)$ ($\lambda \in (0, 1)$)
Control variables

✓ $c(\cdot)$ consumption rate
✓ $\pi(\cdot)$ amount of liquid wealth invested in stocks
✓ $M(\cdot)$ cumulative withdrawal from the pension fund
✓ $L(\cdot)$ cumulative contribution to the pension fund

Early withdrawals are subject to a cost proportional to the amount, i.e. if the individual withdraws one monetary unit from the pension account, he actually receives $(1 - \lambda)$ ($\lambda \in (0, 1)$)
Control variables

✓ $c(\cdot)$ consumption rate
✓ $\pi(\cdot)$ amount of liquid wealth invested in stocks
✓ $M(\cdot)$ cumulative withdrawal from the pension fund
✓ $L(\cdot)$ cumulative contribution to the pension fund

Early withdrawals are subject to a cost proportional to the amount, i.e. if the individual withdraws one monetary unit from the pension account, he actually receives $(1 - \lambda)$ ($\lambda \in (0, 1)$)
Control variables

✓ $c(\cdot)$ consumption rate
✓ $\pi(\cdot)$ amount of liquid wealth invested in stocks
✓ $M(\cdot)$ cumulative withdrawal from the pension fund
✓ $L(\cdot)$ cumulative contribution to the pension fund

Early withdrawals are subject to a cost proportional to the amount, i.e. if the individual withdraws one monetary unit from the pension account, he actually receives $(1 - \lambda)$ ($\lambda \in (0, 1)$)
Control variables

✓ $c(\cdot)$ consumption rate

✓ $\pi(\cdot)$ amount of liquid wealth invested in stocks

✓ $M(\cdot)$ cumulative withdrawal from the pension fund

✓ $L(\cdot)$ cumulative contribution to the pension fund

Early withdrawals are subject to a cost proportional to the amount, i.e. if the individual withdraws one monetary unit from the pension account, he actually receives $(1 - \lambda)$ ($\lambda \in (0, 1)$)
State variables dynamics

- **Liquid wealth dynamics**

\[dX(t) = [rX(t) + (\mu_a - r)\pi(t) - c(t)] \, dt + \sigma_a\pi(t) \, dZ_1(t) \]
\[+ \, dl(t) - dL(t) + (1 - \lambda) \, dM(t), \quad \text{if } 0 \leq t < T \]
\[dX(t) = [rX(t) + (\mu_a - r)\pi(t) - c(t)] \, dt + \sigma_a\pi(t) \, dZ_1(t) \]
\[+ \, \frac{Y(T)}{aT, r} \, dt, \quad \text{if } t \geq T \]

- **Illiquid wealth dynamics**

\[dY(t) = Y(t) [\mu_p \, dt + \sigma_p \, dZ_1(t)] + dL(t) - dM(t), \quad \text{if } 0 \leq t \leq T \]
The model

State variables dynamics

- **Liquid wealth dynamics**

 $$dX(t) = \left[rX(t) + (\mu_a - r) \pi(t) - c(t) \right] dt + \sigma_a \pi(t) dZ_1(t)$$

 $$+ dl(t) - dL(t) + (1 - \lambda) dM(t), \quad \text{if } 0 \leq t < T$$

 $$dX(t) = \left[rX(t) + (\mu_a - r) \pi(t) - c(t) \right] dt + \sigma_a \pi(t) dZ_1(t)$$

 $$+ \frac{Y(T)}{a_T, r} dt, \quad \text{if } t \geq T$$

- **Illiquid wealth dynamics**

 $$dY(t) = Y(t) [\mu_p dt + \sigma_p dZ_1(t)] + dL(t) - dM(t), \quad \text{if } 0 \leq t \leq T$$
State variables dynamics

- **Liquid wealth dynamics**

 \[dX(t) = \left[rX(t) + (\mu_a - r)\pi(t) - c(t) \right] dt + \sigma_a\pi(t) dZ_1(t) \]
 \[+ dl(t) - dL(t) + (1 - \lambda) dM(t), \]
 \[\text{if } 0 \leq t < T \]

 \[dX(t) = \left[rX(t) + (\mu_a - r)\pi(t) - c(t) \right] dt + \sigma_a\pi(t) dZ_1(t) \]
 \[+ \frac{Y(T)}{a_T} dt, \]
 \[\text{if } t \geq T \]

- **Illiquid wealth dynamics**

 \[dY(t) = Y(t) [\mu_p dt + \sigma_p dZ_1(t)] + dL(t) - dM(t), \]
 \[\text{if } 0 \leq t \leq T \]
Agent’s profile

▶ Preferences:

\[u(c) = \frac{c^\gamma}{\gamma}, \quad \gamma < 1, \gamma \neq 0 \]

▶ Agent random lifetime:

\[\tau : \Omega \rightarrow (0, +\infty) \]

▶ The survival probability:

\[s_p(t) := \mathbb{P}(\tau \geq t + s \mid \tau \geq t) = e^{-\int_t^{t+s} \theta(z) dz} \]

with \(\theta \) increasing and continuous.
Agent’s profile

▶ Preferences:

\[u(c) = \frac{c^\gamma}{\gamma}, \quad \gamma < 1, \gamma \neq 0 \]

▶ Agent random lifetime:

\[\tau : \Omega \rightarrow (0, +\infty) \]

▶ The survival probability:

\[s\rho_t := \mathbb{P}(\tau \geq t + s \mid \tau \geq t) = e^{-\int_{t}^{t+s} \theta(z)dz} \]

with \(\theta \) increasing and continuous.
Agent’s profile

- Preferences:
 \[u(c) = \frac{c^\gamma}{\gamma}, \quad \gamma < 1, \gamma \neq 0 \]

- Agent random lifetime:
 \[\tau : \Omega \rightarrow (0, +\infty) \]

- The survival probability:
 \[s\rho_t := \mathbb{P}(\tau \geq t + s \mid \tau \geq t) = e^{-\int_t^{t+s} \theta(z) \, dz} \]
 with \(\theta \) increasing and continuous.
The problem

Maximize

\[J(t, x, y, \xi) := \mathbb{E} \left[\int_t^T e^{-\delta(s-t)} u(c(s)) \, ds \right], \quad (1) \]

over all admissible controls \(\xi := (c, \pi, L, M) \)

Assuming independency between financial and demographic uncertainty, (1) may be written as

\[J(t, x, y; \xi) = \mathbb{E} \left[\int_t^\infty e^{-\int_t^s (\delta + \theta(z)) \, dz} u(c(s)) \, ds \right] \]

The indirect utility (or value function) is

\[v(t, x, y) := \sup_{\xi} J(t, x, y, \xi) \]
The problem

Maximize

$$J(t, x, y, \xi) := \mathbb{E} \left[\int_t^T e^{-\delta(s-t)} u(c(s)) \, ds \right],$$ \hspace{1cm} (1)

over all admissible controls $\xi := (c, \pi, L, M)$

Assuming independency between financial and demographic uncertainty, (1) may be written as

$$J(t, x, y; \xi) = \mathbb{E} \left[\int_t^\infty e^{-\int_t^s (\delta+\theta(z)) \, dz} u(c(s)) \, ds \right]$$

The indirect utility (or value function) is

$$v(t, x, y) := \sup_{\xi} J(t, x, y, \xi)$$
The problem

Maximize

\[J(t, x, y, \xi) := \mathbb{E} \left[\int_t^T e^{-\delta(s-t)} u(c(s)) \, ds \right], \tag{1} \]

over all admissible controls \(\xi := (c, \pi, L, M) \).

Assuming independency between financial and demographic uncertainty, (1) may be written as

\[J(t, x, y; \xi) = \mathbb{E} \left[\int_t^\infty e^{-\int_t^s (\delta + \theta(z)) \, dz} u(c(s)) \, ds \right] \]

The indirect utility (or value function) is

\[v(t, x, y) := \sup_{\xi} J(t, x, y, \xi) \]
Problem reduction

Markovian structure

\[v(t, x, y) = \sup_{\xi} \mathbb{E} \left[\int_t^T e^{-\int_t^u (\delta + \theta(z))dz} u(c(u))du \right. \]

\[+ e^{-\int_t^T (\delta + \theta(z))dz} v^{post}(T, X_{t,x,y}(T), Y_{t,x,y}(T)) \]

The problem splits into:

1. the Post-retirement problem \((t \geq T)\)
2. the Pre-retirement problem \((t < T)\)
Problem reduction

Markovian structure

Dynamic Programming Principle

\[v(t, x, y) = \sup_{\xi} \mathbb{E} \left[\int_{t}^{T} e^{-\int_{t}^{u} (\delta + \theta(z)) \, dz} u(c(u)) \, du \right. \]

\[+ e^{-\int_{t}^{T} (\delta + \theta(z)) \, dz} v^{\text{post}}(T, X_{t,x,y}^{\xi}(T), Y_{t,x,y}^{\xi}(T)) \]

The problem splits into:

1. the Post-retirement problem \((t \geq T)\)
2. the Pre-retirement problem \((t < T)\)
Problem reduction

Markovian structure

\[+ \]

Dynamic Programming Principle

\[\downarrow \]

\[v(t, x, y) = \sup_{\xi} \mathbb{E} \left[\int_t^T e^{-\int_t^u (\delta + \theta(z)) dz} u(c(u)) du \right. \]

\[+ e^{-\int_t^T (\delta + \theta(z)) dz} \nu^{post}(T, X_{t,x,y}(T), Y_{t,x,y}(T)) \]

The problem splits into:

1. the Post-retirement problem \((t \geq T)\)
2. the Pre-retirement problem \((t < T)\)
Problem reduction

Markovian structure

+ Dynamic Programming Principle

\[v(t, x, y) = \sup_{\xi} E \left[\int_t^T e^{-\int_u^T (\delta + \theta(z)) dz} u(c(u)) du \right. \]
\[+ e^{-\int_t^T (\delta + \theta(z)) dz} v^{\text{post}}(T, X_{t,x,y}^\xi(T), Y_{t,x,y}^\xi(T)) \]

The problem splits into:

1. the Post-retirement problem \(t \geq T \)

2. the Pre-retirement problem \(t < T \)
Post-retirement problem: $t \geq T$

$$v(t, x, y) = \sup_{(c, \pi)} \mathbb{E} \left[\int_t^\infty e^{-\int_t^s (\delta + \theta(z)) \, dz} u(c(s)) \, ds \right],$$

subject to

$$dX(s) = \left[rX(s) + (\mu_a - r)\pi(s) + \frac{y}{a_T, r} - c(s) \right] ds + \sigma_a \pi(s) dZ_1(s)$$

Merton type consumption/investment problem:

- deterministic mortality force
- constant income from annuity
- infinite horizon
Post-retirement problem: $t \geq T$

$$v(t, x, y) = \sup_{(c, \pi)} \mathbb{E} \left[\int_t^\infty e^{-\int_t^s (\delta + \theta(z)) dz} u(c(s)) \ ds \right],$$

subject to

$$dX(s) = [rX(s) + (\mu_a - r)\pi(s) + \frac{y}{a_{T,r}} - c(s)] ds + \sigma_a \pi(s) dZ_1(s)$$

Merton type consumption/investment problem:

✓ deterministic mortality force
✓ constant income from annuity
✓ infinite horizon
The Guess and Verify method:

✓ HJB for the value function

✓ HJB analysis (explicit solution)

✓ Optimal controls and Verification Theorem

\[
\max_{(c, \pi) \in [0, \infty) \times \mathbb{R}} \left\{ v_t + \mathcal{L}^{c,\pi}[v] + u(c) - (\delta + \theta(t))v \right\} = 0,
\]

where \(\mathcal{L}^{c,\pi} \) is the differential operator associated to \(X \)

\[
\mathcal{L}^{c,\pi}[w](t, x, y) = \frac{1}{2} \sigma^2_a \pi^2 w_{xx} + rxw_x + \pi(\mu_a - r)w_x + \frac{y}{a_{T,r}} w_x - cw_x,
\]

with \(w \in C^{1,2}([T, \infty) \times \mathbb{R}^2) \).
The Guess and Verify method:

✓ HJB for the value function

✓ HJB analysis (explicit solution)

✓ Optimal controls and Verification Theorem

\[
\max_{(c,\pi)\in[0,\infty)\times\mathbb{R}} \left\{ v_t + \mathcal{L}^{c,\pi}[v] + u(c) - (\delta + \theta(t))v \right\} = 0, \tag{2}
\]

where \(\mathcal{L}^{c,\pi} \) is the differential operator associated to \(X \)

\[
\mathcal{L}^{c,\pi}[w](t, x, y) = \frac{1}{2} \sigma^2 \pi^2 w_{xx} + rxw_x + \pi(\mu a - r)w_x + \frac{y}{a_{T,r}}w_x - cw_x,
\]

with \(w \in C^{1,2}([T, \infty) \times \mathbb{R}^2) \).
The Guess and Verify method:

✓ HJB for the value function

✓ HJB analysis (explicit solution)

✓ Optimal controls and Verification Theorem

\[
\max_{(c, \pi) \in [0, \infty) \times \mathbb{R}} \left\{ v_t + \mathcal{L}^{c, \pi}[v] + u(c) - (\delta + \theta(t))v \right\} = 0,
\]

(2)

where \(\mathcal{L}^{c, \pi}\) is the differential operator associated to \(X\)

\[
\mathcal{L}^{c, \pi}[w](t, x, y) = \frac{1}{2} \sigma_a^2 \pi^2 w_{xx} + rxw_x + \pi(\mu_a - r)w_x + \frac{y}{a_{T,r}} w_x - cw_x,
\]

with \(w \in C^{1,2}([T, \infty) \times \mathbb{R}^2)\).
The Guess and Verify method:

✓ HJB for the value function
✓ HJB analysis (explicit solution)
✓ Optimal controls and Verification Theorem

$$\max_{(c,\pi) \in [0,\infty) \times \mathbb{R}} \left\{ v_t + L_{c,\pi}^c [v] + u(c) - (\delta + \theta(t))v \right\} = 0,$$

where $L_{c,\pi}^c$ is the differential operator associated to X

$$L_{c,\pi}^c [w](t, x, y) = \frac{1}{2} \sigma^2 a^2 \pi^2 w_{xx} + rxw_x + \pi (\mu a - r)w_x + \frac{y}{a_{T,r}} w_x - cw_x,$$

with $w \in C^{1,2}([T, \infty) \times \mathbb{R}^2)$.
The Post-retirement value function

\[v_{\text{post}}(t, x, y) = \frac{(k(t))^{1-\gamma}}{\gamma} \left(x + \frac{y}{r \, a_T, r} \right)^\gamma \]

where

\[k(t) = \int_t^\infty \exp \left\{ -\frac{1}{1-\gamma} \int_t^\infty \left[\frac{1}{2} \left(\frac{\mu a - r}{\sigma a} \right)^2 \frac{\gamma}{\gamma - 1} - r\gamma + \delta + \theta(s) \right] \, ds \right\} \, du \]
The Post-retirement optimal policies

\[
c^*(t, x, y) = \frac{1}{k(t)} \left(x + \frac{y}{r a_{T,r}} \right)
\]

\[
\pi^* (t, x, y) = \frac{(\mu a - r)}{\sigma_a^2 (1 - \gamma)} \left(x + \frac{y}{r a_{T,r}} \right)
\]

- strategies take into account the future pension stream
- the consumption rate increases in time, all other things the same
- if the mortality force goes to \(\infty \) then \(c^* \to \infty \)
- \(\pi^* \) is not affected by demographic uncertainty
The Post-retirement optimal policies

\[c^* (t, x, y) = \frac{1}{k(t)} \left(x + \frac{y}{r a_{T,r}} \right) \]

\[\pi^* (t, x, y) = \frac{(\mu_a - r)}{\sigma^2_a (1 - \gamma)} \left(x + \frac{y}{r a_{T,r}} \right) \]

- strategies take into account the future pension stream
- the consumption rate increases in time, all other things the same
- if the mortality force goes to \(\infty \) then \(c^* \rightarrow \infty \)
- \(\pi^* \) is not affected by demographic uncertainty
Pre-retirement problem $t \in [0, T)$

\[
\nu(t, x, y) = \sup_{\xi} \mathbb{E} \left[\int_t^T e^{-\int_t^u (\delta + \theta(z)) dz} u(c(u)) du + e^{-\int_t^T (\delta + \theta(z)) dz} \nu^{post}(T, X_{t,x,y}(T), Y_{t,x,y}(T)) \right]
\]

- Consumption/investment problem with:
 - proportional transaction costs
 - demographic uncertainty
 - stochastic income
 - finite time horizon
Pre-retirement problem $t \in [0, T)$

$$
\nu(t, x, y) = \sup_{\xi} \mathbb{E} \left[\int_t^T e^{-\int_t^u (\delta + \theta(z)) dz} u(c(u)) du + e^{-\int_t^T (\delta + \theta(z)) dz} v^{\text{post}}(T, X_{t,x,y}^{\xi}(T), Y_{t,x,y}^{\xi}(T)) \right]
$$

- Consumption/investment problem with:
 - proportional transaction costs
 - demographic uncertainty
 - stochastic income
 - finite time horizon
The Solvency Region

\[
\begin{align*}
 dX(t) &= [rX(t) + (\mu_a - r)\pi(t) - c(t)]dt + \sigma_a\pi(t)dZ_1(t) \\
 &\quad + dl(t) - dL(t) + (1 - \lambda)dM(t), \\
 dY(t) &= Y(t)[\mu_p dt + \sigma_p dZ_1(t)] + dL(t) - dM(t)
\end{align*}
\]

Let the individual hold a position \((x, y)\), then he gets

- \(x + (1 - \lambda)y\) if he liquidates instantaneously the holding in the pension account
- \(x + y\) if he transfers all liquid wealth into the pension account

Assume the individual cannot borrow against the pension account, i.e. \(y \geq 0\), then

- the Solvency region is

\[
S_T = \left\{(x, y) : x + (1 - \lambda)y \geq 0, \ y \geq 0\right\}
\]
The Solvency Region

$$\begin{align*}
\text{d}X(t) &= \left[rX(t) + (\mu_a - r)\pi(t) - c(t) \right] dt + \sigma_a \pi(t) dZ_1(t) \\
&\quad + dl(t) - dL(t) + (1 - \lambda) dM(t), \\
\text{d}Y(t) &= Y(t) \left[\mu_p dt + \sigma_p dZ_1(t) \right] + dL(t) - dM(t)
\end{align*}$$

Let the individual hold a position \((x, y)\), then he gets

- \(x + (1 - \lambda)y\) if he liquidates instantaneously the holding in the pension account
- \(x + y\) if he transfers all liquid wealth into the pension account

Assume the individual cannot borrow against the pension account, i.e. \(y \geq 0\), then

- the Solvency region is

\[
S_T = \left\{ (x, y) : x + (1 - \lambda)y \geq 0, \ y \geq 0 \right\}
\]
The Solvency Region

\[
\begin{align*}
\frac{dX(t)}{} &= \left[rX(t) + (\mu_a - r)\pi(t) - c(t)\right]dt + \sigma_a\pi(t)\,dZ_1(t) \\
&\quad + dl(t) - dL(t) + (1 - \lambda)dM(t), \\
\frac{dY(t)}{} &= Y(t)[\mu_p\,dt + \sigma_p\,dZ_1(t)] + dl(t) - dM(t)
\end{align*}
\]

Let the individual hold a position \((x, y)\), then he gets

- \(x + (1 - \lambda)y\) if he liquidates instantaneously the holding in the pension account
- \(x + y\) if he transfers all liquid wealth into the pension account

Assume the individual cannot borrow against the pension account, i.e. \(y \geq 0\), then

- the Solvency region is

\[
S_T = \left\{(x, y) : x + (1 - \lambda)y \geq 0, \ y \geq 0\right\}
\]
The Solvency Region

\[
\begin{align*}
 dX(t) &= [rX(t) + (\mu_a - r)\pi(t) - c(t)]dt + \sigma_a\pi(t)dZ_1(t) \\
 &\quad + dl(t) - dL(t) + (1 - \lambda)dM(t), \\
 dY(t) &= Y(t) [\mu_p dt + \sigma_p dZ_1(t)] + dL(t) - dM(t)
\end{align*}
\]

Let the individual hold a position \((x, y)\), then he gets

- \(x + (1 - \lambda)y\) if he liquidates instantaneously the holding in the pension account
- \(x + y\) if he transfers all liquid wealth into the pension account

Assume the individual cannot borrow against the pension account, i.e. \(y \geq 0\), then

- the Solvency region is

\[
S_T = \{(x, y) : x + (1 - \lambda)y \geq 0, \ y \geq 0\}
\]
The Solvency Region

\[
\begin{cases}
 dX(t) & = & [rX(t) + (\mu_a - r)\pi(t) - c(t)]dt + \sigma_a\pi(t)dZ_1(t) \\
 & & + dl(t) - dL(t) + (1 - \lambda)dM(t), \\
 dY(t) & = & Y(t)[\mu_p dt + \sigma_p dZ_1(t)] + dL(t) - dM(t)
\end{cases}
\]

Let the individual hold a position \((x, y)\), then he gets

- \(x + (1 - \lambda)y\) if he liquidates instantaneously the holding in the pension account
- \(x + y\) if he transfers all liquid wealth into the pension account

Assume the individual cannot borrow against the pension account, i.e. \(y \geq 0\), then
- the Solvency region is

\[S_T = \{(x, y) : x + (1 - \lambda)y \geq 0, \ y \geq 0\}\]
The Solvency Region

\[
\begin{aligned}
 dX(t) &= [rX(t) + (\mu_a - r)\pi(t) - c(t)]dt + \sigma_a\pi(t)dZ_1(t) \\
 &\quad + dl(t) - dL(t) + (1 - \lambda)dM(t), \\
 dY(t) &= Y(t) [\mu_p dt + \sigma_p dZ_1(t)] + dL(t) - dM(t)
\end{aligned}
\]

Let the individual hold a position \((x, y)\), then he gets

- \(x + (1 - \lambda)y\) if he liquidates instantaneously the holding in the pension account
- \(x + y\) if he transfers all liquid wealth into the pension account

Assume the individual cannot borrow against the pension account, i.e. \(y \geq 0\), then

- the Solvency region is

\[
S_T = \left\{ (x, y) : x + (1 - \lambda)y \geq 0, \ y \geq 0 \right\}
\]
Heuristic and HJB equation (1)

Fix \(t \in [0, T) \) and \((x, y) \in S_T\)

- If the individual does not transfer money to or from the fund, then

\[
\sup_{(c, \pi) \in \mathbb{R}^+ \times \mathbb{R}} \left\{ v_t + M^{c, \pi}[v] + u(c) - (\delta + \theta(t)) v \right\} \geq 0 \tag{3}
\]

where

\[
M^{c, \pi}[g] = \frac{1}{2} \left[(\sigma_a \pi + \rho \sigma_1 x)^2 + (1 - \rho^2) \sigma_1^2 x^2 \right] g_{xx} + \frac{1}{2} y^2 \sigma_p^2 g_{yy} \\
+ (\sigma_a \pi + \rho \sigma_1 x) \sigma_p y g_{xy} + \left[\pi (\mu_a - r) + rx + \mu_1 x - c \right] g_x + \mu_p y g_y.
\]
Heuristic and HJB equation (1)

Fix $t \in [0, T)$ and $(x, y) \in S_T$

- If the individual does not transfer money to or from the fund, then

$$\sup_{(c, \pi) \in \mathbb{R}^+ \times \mathbb{R}} \left\{ v_t + M^{c, \pi}[v] + u(c) - (\delta + \theta(t))v \right\} \geq 0 \quad (3)$$

where

$$M^{c, \pi}[g] = \frac{1}{2} \left[(\sigma_{a\pi} + \rho\sigma_{Ix})^2 + (1 - \rho^2)\sigma_{ix}^2 \right] g_{xx} + \frac{1}{2} y^2 \sigma_{py}^2 g_{yy}$$

$$+ (\sigma_{a\pi} + \rho\sigma_{Ix}) \sigma_{py} g_{xy} + \left[\pi (\mu_a - r) + rx + \mu_{Ix}x - c \right] g_x + \mu_{py} g_y.$$
Heuristic and HJB equation (2)

- If the individual withdraws immediately $dM = \varepsilon > 0$ from the fund and then proceeds optimally, we have

$$v(t, x, y) \geq v(t, x + (1 - \lambda)\varepsilon, y - \varepsilon)$$

Dividing by ε and letting $\varepsilon \to 0$, we obtain

$$-(1 - \lambda)v_x + v_y \geq 0.$$ \hspace{1cm} (4)

- Similarly, the policy contribute $dL = \varepsilon$ and then proceed optimally, yields the condition

$$v_x - v_y \geq 0.$$ \hspace{1cm} (5)
Heuristic and HJB equation (2)

- If the individual withdraws immediately $dM = \varepsilon > 0$ from the fund and then proceeds optimally, we have

$$v(t, x, y) \geq v(t, x + (1 - \lambda)\varepsilon, y - \varepsilon)$$

Dividing by ε and letting $\varepsilon \to 0$, we obtain

$$-(1 - \lambda)v_x + v_y \geq 0.$$ \hspace{1cm} (4)

- Similarly, the policy contribute $dL = \varepsilon$ and then proceed optimally, yields the condition

$$v_x - v_y \geq 0.$$ \hspace{1cm} (5)
Pre-retirement HJB formulation

We expect the value function to satisfy in some sense the following variational inequality:

$$\min \left\{ \sup_{c, \pi} \left\{ v_t + M^{c, \pi}[v] + u(c) - (\delta + \theta(t))v \right\}; - (1 - \lambda)v_x + v_y; v_x - v_y \right\} = 0$$

with boundary condition

$$v(T, x, y) = v^{post}(T, x, y)$$
Lipschitz continuous controls (1)

Let L and M such that

$$L(t) = \int_0^t l(s) \, ds, \quad M(t) = \int_0^t m(s) \, ds, \quad 0 \leq l(s), m(s) \leq k$$

Then, the state dynamics become

$$
\begin{align*}
\frac{dX(t)}{dt} &= [rX(t) + (\mu_a - r)\pi(t) - c(t) - l(t) + (1 - \lambda)m(t)]dt + \\
& \quad \sigma_a\pi(t)dZ_1(t) + dl(t), \\
\frac{dY(t)}{dt} &= Y(t)[\mu_p dt + \sigma_p dZ_1(t)] + l(t)dt - m(t)dt
\end{align*}
$$
Lipschitz continuous controls (1)

Let L and M such that

\[L(t) = \int_0^t l(s) \, ds, \quad M(t) = \int_0^t m(s) \, ds, \quad 0 \leq l(s), m(s) \leq k \]

Then, the state dynamics become

\[
\begin{align*}
\frac{dX(t)}{dt} &= [rX(t) + (\mu_a - r)\pi(t) - c(t) - l(t) + (1 - \lambda)m(t)] \, dt + \\
&\quad \sigma_a\pi(t) \, dZ_1(t) + dl(t), \\
\frac{dY(t)}{dt} &= Y(t) [\mu_p \, dt + \sigma_p \, dZ_1(t)] + l(t) \, dt - m(t) \, dt
\end{align*}
\]
Lipschitz continuous controls (2)

The HJB equation becomes

$$\max_{0 \leq l, m \leq k} \left\{ v_t + \mathcal{L}_{c, \pi}^c[v] + (v_y - v_x)l + ((1 - \lambda)v_x - v_y)m + u(c) - (\delta + \theta(t))v \right\} = 0$$

The maximizers are

$$l = \begin{cases} k & \text{if } v_y \geq v_x \\ 0 & \text{if } v_y < v_x \end{cases}, \quad m = \begin{cases} k & \text{if } v_y \leq (1 - \lambda)v_x \\ 0 & \text{if } v_y > (1 - \lambda)v_x \end{cases}$$

Then, the optimal contribution/withdrawal policies are **bang-bang**
Lipschitz continuous controls (2)

The HJB equation becomes

$$\max_{0 \leq l, m \leq k} \left\{ v_t + \mathcal{M}^c, \pi [v] + (v_y - v_x) l + ((1 - \lambda) v_x - v_y) m + u(c) - (\delta + \theta(t)) v \right\} = 0$$

The maximizers are

$$l = \begin{cases} k & \text{if } v_y \geq v_x \\ 0 & \text{if } v_y < v_x \end{cases}, \quad m = \begin{cases} k & \text{if } v_y \leq (1 - \lambda) v_x \\ 0 & \text{if } v_y > (1 - \lambda) v_x \end{cases}$$

Then, the optimal contribution/withdrawal policies are **bang-bang**
For $t \in [0, T)$,

- the value function is
 - concave in (x, y)
 - $v(t, \rho x, \rho y) = \rho^\gamma v(t, x, y)$, $\rho > 0$,

where $(x, y) \in S_T$

- the Solvency region splits into
 - Withdrawal
 - No Transaction (NT)
 - Contribution

The three regions are connected sets separated by straight lines.
For $t \in [0, T)$,

- the value function is
 - concave in (x, y)
 - $v(t, \rho x, \rho y) = \rho^\gamma v(t, x, y)$, $\rho > 0$,

where $(x, y) \in S_T$

- the Solvency region splits into
 - Withdrawal
 - No Transaction (NT)
 - Contribution

The three regions are connected sets separated by straight lines
The lines delimiting the NT region depend on time and on the parameters of the model.
The Pre-retirement optimal policies

\[c^*(t) = (v_x)^{\frac{1}{\gamma - 1}} \]

\[\pi^*(t) = -\frac{(\mu_a - r) v_x}{\sigma_a^2 v_{xx}} - \frac{\sigma_p Y^*(t) v_{xy}}{\sigma_a v_{xx}} - \frac{\rho \sigma_I X^*(t)}{\sigma_a} \]

\[(L^*(t), M^*(t)) = \begin{cases} \text{local times that keep} \\ (X^*(t), Y^*(t)) \text{ in } NT \end{cases} \]

- \(c^* \) has the usual Merton form in terms of \(v_x \)
- income uncertainty \(\Rightarrow \) prudent financial investment
- ambiguous effect of the pension fund
The Pre-retirement optimal policies

\[c^* (t) = (v_x)^\frac{1}{\gamma-1} \]

\[\pi^* (t) = -\frac{(\mu_a - r) v_x}{\sigma_a^2 v_{xx}} - \frac{\sigma_p Y^* (t) v_{xy}}{\sigma_a v_{xx}} - \frac{\rho \sigma_1 X^* (t)}{\sigma_a} \]

\[(L^* (t), M^* (t)) = \left\{ \begin{array}{l}
\text{local times that keep } (X^* (t), Y^* (t)) \text{ in } NT \\
\end{array} \right. \]

- \(c^* \) has the usual Merton form in terms of \(v_x \)
- income uncertainty \(\Rightarrow \) prudent financial investment
- ambiguous effect of the pension fund
State space reduction

The homothetic property of the value function allows for the following state space reduction.

Define

\[w(t, z) := v(t, z, 1), \quad z \in (\lambda - 1, +\infty). \]

then

\[v(t, x, y) = y^\gamma w \left(t, \frac{x}{y} \right), \]

where \(w \) solves the following variational inequality:

\[
\min \left\{ w_t + \beta_1 zw_z - \beta_2 \frac{w_z^2}{w_{zz}} + \beta_3 (w_z)^{\gamma - 1} + \alpha(t) w; \right.

\left. - (z + 1 - \lambda) w_z + \gamma w; \quad (z + 1) w_z - \gamma w \right\} = 0, \tag{6}
\]

for every \((t, z) \in [0, T) \times (\lambda - 1, +\infty)\), with \(\beta_1, \beta_2, \beta_3 \) real constants dependent on parameters and \(\alpha(t) \) a deterministic function.
The *Withdrawal, NT, and Contribution* regions in the reduced state space:

The curves delimiting the NT region depend on the parameters of the model.
Solutions in the transaction regions

A family of solutions of the reduced HJB in the *Withdrawal* region is:

$$w(t, z) = A(t) \left(z + (1 - \lambda) \right)^{\gamma}, \quad \forall (t, z) \in (0, T) \times (\lambda - 1, z_1(t)),$$

whereas, in the *Contribution* region, a class of solutions of the HJB is:

$$w(t, z) = B(t) \left(z + 1 \right)^{\gamma}, \quad \forall (t, z) \in (0, T) \times (z_2(t), +\infty).$$

The functions $A(t), B(t), z_1(t), z_2(t)$ will be determined endogenously by means of the so called *principle of smooth-fit*, once we have a reasonable family of solutions in the *NT* region.
Final remarks

- So far, we have split the individual’s problem into two separated problems concerning:
 - the post-retirement period (explicit solutions)
 - the pre-retirement period (still in progress)

- Further analysis is needed in order to answer the original question

- The boundary of NT and its dependence on the problem’s parameters

- Numerical analysis
Final remarks

- So far, we have split the individual’s problem into two separated problems concerning:
 - ✓ the post-retirement period (explicit solutions)
 - ✓ the pre-retirement period (still in progress)

- Further analysis is needed in order to answer the original question

- The boundary of NT and its dependence on the problem’s parameters

- Numerical analysis
Final remarks

- So far, we have split the individual’s problem into two separated problems concerning:
 - the post-retirement period (explicit solutions)
 - the pre-retirement period (still in progress)

- Further analysis is needed in order to answer the original question

- The boundary of NT and its dependence on the problem’s parameters

- Numerical analysis
Final remarks

- So far, we have split the individual’s problem into two separated problems concerning:
 - ✓ the post-retirement period (explicit solutions)
 - ✓ the pre-retirement period (still in progress)

- Further analysis is needed in order to answer the original question

- The boundary of NT and its dependence on the problem’s parameters

- Numerical analysis